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Thermodynamic Properties of Sutherland Fluids from
an Analytical Perturbation Theory
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Analytical expressions are obtained for the thermodynamic properties of fluids
with potentials consisting of a spherical hard core plus an attractive tail of the
form 1�r# (Sutherland fluids). To this end, use is made of the Barker�Henderson
perturbation theory together with an analytical expression for the first coordina-
tion shell of the radial distribution function of the reference hard-sphere fluid.
This expression was derived previously on the basis of the analytical solution of
the Percus�Yevick integral equation theory. The results are compared with
available simulation data for a wide range of densities, temperatures, and values
of the potential parameter #. The overall agreement is good, and the accuracy
is similar to that obtained using more accurate solutions for the radial distribu-
tion function of the hard-sphere fluid leading to nonanalytical expressions for
the thermodynamic properties of the fluid considered.

KEY WORDS: Barker�Henderson perturbation theory; equation of state;
hard-sphere fluid; radial distribution function; Sutherland potential.

1. INTRODUCTION

In the van der Waals model of fluids, the particles interact by means of a
potential of the form

u(x)={�,
&=�x #,

x�1
x>1

(1)

which is also called the Sutherland potential [1]. In this expression, x=r�_
is the distance in units of the hard-core diameter _. This potential model
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closely mimics the Lennard�Jones potential, whose shape, in turn, repro-
duces qualitatively the shape of the potentials of real simple fluids.

On the other hand, perturbation theories for fluids with continuous
potentials are based on obtaining the thermodynamic properties of the
fluid from those of a reference fluid of hard-spheres (HS), with diameters
depending on temperature and, eventually, on density [2, 3], by adding a
temperature-dependent perturbation. However, it is to be noted that the
results obtained from a perturbation theory can be very sensitive to the
effective diameter of the reference fluid. This problem does not appear with
a potential of the form of Eq. (1) in which the diameter of the particles is
perfectly defined, in contrast with the case of a continuous potential such
as the Lennard�Jones potential. Moreover, once we have set up a suf-
ficiently accurate perturbation scheme for a Sutherland fluid, it is easy to
extend it to Lennard�Jones fluids and even to real simple fluids. This could
be achieved, for example, by means of changing the real fluid to an effective
Sutherland fluid with parameters _, =, and # appropriate for the fluid con-
sidered. One way to do this is to treat these parameters as adjustable
parameters. This would allow us to use the expressions of the thermo-
dynamic properties derived for the Sutherland potential to predict the
properties of other kind of fluids.

In this paper, we obtain analytical expressions for the thermodynamic
properties of Sutherland fluids as functions of the temperature, density, and
value of the parameter #, which determines the effective range of the potential.
These expressions are derived from the second-order Barker�Henderson
perturbation theory in combination with a simple expression for the first
coordination shell of the radial distribution function (r.d.f.) of the hard-
sphere reference fluid, derived previously [4]. The results are compared
with available simulation data and with those obtained using more sophis-
ticated expressions for the HS r.d.f.

2. THEORY

In order to obtain the thermodynamic properties of a fluid whose par-
ticles interact by means of a spherically symmetric potential, the Barker�
Henderson perturbation theory [2] requires knowledge of the equation of
state and the r.d.f. of a reference hard-sphere fluid. For this fluid, a great
number of equations of state are available. Among them, the most frequently
used is the Carnahan and Starling (CS) equation of state [5], which
combines simplicity and accuracy:

Z CS=
1+'+'2&'3

(1&')3 (2)
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where '=?\_3�6 is the packing fraction corresponding to the number
density \ for spheres of diameter _.

With respect to the r.d.f., there are available analytical expressions for
the r.d.f. [6�9] from the solution of the Percus�Yevick (PY) integral equa-
tion. However, it is known that the PY solution is not sufficiently accurate,
particularly for radial distances close to contact. Therefore, a considerable
number of procedures have been developed to improve the accuracy of the
r.d.f. obtained from integral equation theories. In most cases, the resulting
r.d.f. is nonanalytical, which makes its use impractical, particularly in the
context of perturbation theories. For future reference, we mention here
only the expressions for the r.d.f. of the HS fluid derived by Bravo Yuste
and Santos [10] and by Tang and Lu [11], which are analytical, reason-
ably simple, and very accurate.

The problem is that, when used in perturbation theories, even the
simplest expressions for the r.d.f. derived from integral equation theories,
which are those which result from the PY theory, in general lead to non-
analytical expressions for the thermodynamic properties of model fluids. In
particular, this is the case for the Sutherland model that we are considering
here.

In a previous paper [4], we derived a simple expression for the first
coordination shell for the r.d.f. of the HS fluid. This will allow us to obtain
analytical expressions for the thermodynamic properties of the van der
Waals fluids, as we will see later. The expression for g1(x) is

g1(x)=
1
x2 :

�

n=1

:
�

m=0

Inm
n(x&1.5)n&1

(1&')n+1 'm (3)

where Inm are constants. This result was obtained on the basis of the
analytical expression for the PY r.d.f. in the form derived by Chang and
Sandler [9]. The procedure consisted in performing a double-series expan-
sion of the analytical expression of g1(x), in terms of both the packing
fraction ' and the reduced distance x. This is very tedious and not as simple
as it might appear at first sight, but the final expression, Eq. (3), is simple
enough and suitable for our purposes. Values of the coefficients Inm up to
n=8 and m=16 were reported in the same paper. This is sufficient to
obtain values of g1(x) which are in close agreement with those obtained
from the starting expression.

The procedure could be applied to the second coordination shell, to
obtain g2(x). However, this would result in a more complicated expression
for the r.d.f. and, consequently, for the thermodynamic properties obtained
by means of a perturbation theory. Instead, we consider only the first coor-
dination shell of the r.d.f. of the HS fluid and add a tail correction consistent
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with assuming g(x)=1 for the second- and higher-order shells, as for the
ideal gas. We have found that, for the fluids we are studying here, this is
sufficient to obtain good overall results for the thermodynamic properties.
Therefore, we take

g(x)={ g1(x),
1,

1�x�2
x>2

(4)

where g1(x) is given by Eq. (3), which we rewrite in the form

g(x)=
1
x2 :

�

n=1

Gn(')(x&1.5)n&1 (5)

with

Gn(')=
n

(1&')n+1 :
�

m=0

Inm'm (6)

Once a suitable expression for g(x) is available, it can be used in com-
bination with the Barker�Henderson perturbation theory [2] to obtain the
thermodynamic properties of the fluid. This theory expresses the free
energy as a power series in the inverse of the reduced temperature
T*=kT�=, where = is the energy parameter of the potential. Up to second
order, the result is

F
NkT

=
F0

NkT
+

F1

NkT
1

T*
+

F2

NkT
1

T*2 (7)

where the subscript 0 refers to the hard-sphere reference fluid,

F1=12' |
�

0
g(x) u(x) x2 dx (8)

and, in the so-called ``local compressibility'' approximation,

F2=&
36
?

'kT
_3 \�'

�p+0

�
�' \' |

�

0
g(x) u2(x) x2 dx+ (9)

If we introduce expression Eq. (4), together with Eqs. (5) and (6), and denote

I1= :
�

n=1

Gn |
2

1
(x&1.5)n&1 u*(x) dx+|

�

2
u*(x) x2 dx (10)

I2= :
�

n=1

Gn |
2

1
(x&1.5)n&1 u*2(x) dx+|

�

2
u*2(x) x2 dx (11)
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then Eqs. (8) and (9) can be expressed in the form

F1

NkT
=12'I1 (12)

and

F2

NkT
=&

36
?

'kT
_3 \�'

�p+0

�
�'

('I2)=&
36
?

'kT
_3 \�'

�p+0 \I2+'
�I2

�' + (13)

The compressibility factor can be obtained from Eq. (7) in the form

pV
NkT

=\ pV
NkT +0

+'
�

�' _
F

NkT
&

F0

NkT &
=\ pV

NkT +0

+
p1 V
NkT

1
T*

+
p2V
NkT

1
T*2 (14)

where

p1V
NkT

=12' \I1+'
�I1

�' + (15)

and

p2V
NkT

=&
36'kT

?_3 {_\�'
�p+0

+'
�

�' \
�'
�p+0&\I2+'

�I2

�' +
+' \�'

�p+0 \2
�I2

�'
+'

�2I2

�'2 += (16)

The internal energy is given by

U
NkT

=&T
�

�T \ F
NkT +=

U0

NkT
+

U1

NkT
1

T*
+

U2

NkT
1

T*2 (17)

with

U1

NkT
=

F1

NkT
(18)
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and

U2

NkT
=

2F2

NkT
(19)

For a potential of the form of Eq. (1), with #>3, we have

I1=& :
�

n=1

Gn(') _ :
n&1

j=1
j{n&#

(&1.5) j (n&1)!
(n&#& j ) j !(n& j&1)!

(2n&#& j&1)

+$(n&#& j )
(&1.5) j (n&1)!

j !(n& j &1)!
log 2&+

23&#

3&#
(20)

where $(z) is the Kronecker delta function, whose value is 1 if and 0
otherwise,

I2= :
�

n=1

Gn(') _ :
n&1

j=1
j{n&2#

(&1.5) j (n&1)!
(n&2#& j ) j !(n& j&1)!

(2n&2#& j&1)

+$(n&2#& j )
(&1.5) j (n&1)!

j !(n& j &1)!
log 2&+

23&2#

3&2#
(21)

�I1 ��' and �I2 ��' are given by Eqs. (20) and (21), respectively, by changing
Gn(') to

�Gn(')
�'

=
n+1
1&'

Gn(')+
n

(1&')n+1 :
�

m=1

mInm 'm&1 (22)

Finally, �2I2��'2 is given by Eq. (21), by changing Gn(') to

�2Gn(')
�'2 =

n+1
(1&')2 Gn(')+

n+1
1&'

�Gn(')
�'

+
n(n+1)

(1&')n+2 :
�

m=1

mInm 'm&1

+
n

(1&')n+1 :
�

m=1

m(m&1) Inm 'm&2 (23)

On the other hand, taking Eq. (2) for the equation of state of the reference
fluid, we have

\�'
�p+0

=
1

kT
?_3

6
(1&')4

1+4'+4'2&4'3+'4 (24)

904 Largo and Solana



and

�
�' \

�'
�p+0

=
1

kT
?_3

6
4(1&')3 (&2&5'+'2)
(1+4'+4'2&4'3+'4)2 (25)

With Eqs. (20) to (25), all quantities needed to obtain up to the second
perturbative contributions to the equation of state and the internal energy
of Sutherland fluids are completely determined.

3. RESULTS AND DISCUSSION

From the expressions derived in the previous section, and the values
of Inm up to n=8 and m=16 reported in a previous paper [4], we have
obtained the compressibility factor Z= pV�NkT and the internal energy of
Sutherland fluids with #=6, 12, 18, and 36 as a function of the packing
fraction '. Results are compared in Figs. 1 and 2 with simulation data
[12]. For #=6, the agreement is very good for both thermodynamic quan-
tities. In the remaining cases, the calculated values of the compressibility
factor closely agree with simulation data at low to moderate densities,
whereas at high densities some deviations appear, which increase for
increasing values of #. The situation in the case of the internal energy is
similar, although the deviations between calculated results and simulation
data start at lower densities. In any case, these deviations for high values
of # are of minor importance, because in real fluids the attractive contribu-
tion to the potential energy generally corresponds to values of # close to 6.

We have considered the possibility of including higher-order perturba-
tive contributions to these thermodynamic properties, in the way proposed
by Praestgaard and Toxvaerd [13]. However, we have found that the
results are hardly distinguishable from those obtained from the second
order perturbation theory. We have also analyzed the effect of using more
accurate analytical expressions for the r.d.f. of the hard-sphere fluid, such
as those of Bravo Yuste and Santos [10] and Tang and Lu [11]. Both
expressions give nearly identical results for the first and second shells of
the r.d.f., and lead to nonanalytical expressions for the thermodynamic
properties of Sutherland fluids. Therefore, we have considered the second
of them because it is somewhat simpler to handle. The compressibility fac-
tor and the internal energy obtained using this expression up to the second
shell in combination with the Barker�Henderson second order perturbation
theory are also shown in Figs. 1 and 2. The results are very close to those
obtained from the expressions derived in the previous section. Therefore, the
reasons for the deviations between calculated values and simulation data
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Fig. 1. Compressibility factor Z=pV�NkT for Sutherland fluids as a function of
the reduced density \*=\_3 for several values of the exponent # of the attractive
part of the potential. Filled circles: Simulation data from Ref. 12. Solid lines:
Eq. (14) with Eqs. (15)�(23). Open circles: Numerical results from BH second-order
perturbation theory with the expression of Tang and Lu [11] for the r.d.f. of the
hard-sphere reference fluid.

observed in these figures have to be attributed to the perturbation theory
itself, rather than to the inaccuracy of the procedure we have developed.

In summary, we have shown that it is possible to obtain analytical
expressions for the thermodynamic properties of Sutherland fluids from a
second-order Barker�Henderson perturbation theory. To achieve this goal,
the starting point consists in expressing the first shell contribution to the
radial distribution function of the reference fluid of hard spheres as a power
series in terms of the reduced radial distance x around x=1.5 and in terms
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Fig. 2. As in Fig. 1 for the absolute value of the excess internal energy, &U E�NkT.
Solid lines: Eq. (17) with Eqs. (18), (19), and (20)�(22).

of the packing fraction '. For this purpose, the analytical expression of the
r.d.f. resulting from the Percus�Yevick theory is to be preferred, because it
is simpler than other analytical solutions of the r.d.f. of the HS fluid and
provides practically the same accuracy when used in a Barker�Henderson
perturbation scheme. For the second- and higher-order shell contributions,
we have found that, for the fluids considered, a good approximation con-
sists in taking g(x), as in the ideal gas. The procedure could be extended
to continuous potentials, such as the Lennard�Jones potential, by intro-
ducing a suitable temperature-dependent effective diameter. Alternatively,
thermodynamic properties of fluids with continuous potentials could be
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obtained from those of an equivalent Sutherland fluid with its potential
parameters suitably determined.
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